

Available online at www.sciencedirect.com

Journal of the European Ceramic Society 24 (2004) 3613–3616

www.elsevier.com/locate/jeurceramsoc

Electrical conductivity and oxygen transfer in gadolinia-doped ceria (CGO)– $Co₃O_{4−δ}$ composites

Y. Ji^{a,∗}, J. A. Kilner^a, M. F. Carolan^b

^a *Department of Materials, Imperial College, London SW7 2AZ, UK* ^b *Air Products and Chemicals, Inc., 7201 Hamilton Boulevard, Allentown, PA 18195-1501, USA*

Received 21 August 2003; received in revised form 26 November 2003; accepted 7 December 2003

Available online 21 April 2004

Abstract

Dense, mixed-conducting ceramic membranes can be used for separation of oxygen from air. Dual-phase composites are an interesting way to obtain mixed conductivity because it is easy to tailor the electrical and transport properties by varying the fractions of the ionic and electronic components. In this study, mixed-conducting $Ce_{0.8}Gd_{0.2}O_{2-\delta}$ (CGO)–Co₃O_{4-δ} composites were fabricated with density about 95% theoretical values. The solubility of $Co₃O_{4−δ}$ in CGO was found to be lower than 1 mol% (or 1.6 vol.%). The total conductivity of the CGO–Co₃O_{4−δ} composites increased with increasing Co₃O_{4−δ} content. A microstructure with two interconnected phases was obtained for a $Co₃O_{4−δ}$ content above 10 mol% (or 15 vol.%). Isotopic exchange depth profiling (IEPD)/secondary ion mass spectrometry (SIMS) method was used to investigate the oxygen diffusion and surface exchange reaction in the composites. The diffusivities of the composites were almost constant within the experimental error with significantly enhanced surface exchange kinetics by adding $Co₃O_{4−δ}$ to CGO. © 2004 Elsevier Ltd. All rights reserved.

Keywords: CeO₂; Composites; Diffusion; Electrical conductivity; Tracer diffusion; Surface exchange; Co₃O₄

1. Introduction

In recent years there has been a great interest in developing mixed conductors, which have both high ionic and electronic conductivity, for a wide range of applications, such as solid oxide fuel cells (SOFCs) and oxygen separation membranes, etc. $1-3$ It has been found that using a mixed conductor as a cathode material for SOFCs significantly improved performance as it promoted a high oxygen permeation flux and a fast surface exchange rate.^{4,[5](#page-3-0)}

Both single-phase ceramics and dual-phase composites can be used to produce such a mixed conductor. The single-phase pervoskite oxides, such as $La_{1-x}Sr_xT_MO_3$ $(T_M = Co, Mn, Fe, Cr, etc.)$ system, have been studied the most and their transport properties are well documented. However, it is difficult to fulfil all the potential requirements with a single-phase material. An alternative is to produce a composite having one component with oxide ionic conductivity and a metal oxide with high electronic

0955-2219/\$ – see front matter © 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.jeurceramsoc.2003.12.016

conductivity, mixed in such proportions to give an interconnected pathway for each component. There have been investigations on such dual-phase mixed-conducting materials, such as $ZrO_2-Mn_2O_3$, ZrO_2-NiO , $ZrO_2-In_2O_3$, 8 and ZrO_2 -TiO₂,^{[9](#page-3-0)} as the properties can be easily tailored for a composite. However, a high concentration of such metal oxide (above 30 mol% for $ZrO_2-Mn_2O_3$ composite) is required in order to produce a three-dimensionally interconnected microstructure. These may compromise the oxygen ion conductivity of the composite, as the electronically conducting phase will act as a block to oxygen transport.

In this study, the electronic conductor $Co₃O_{4−δ}$ was added to CGO to produce a mixed-conducting material for an oxygen separation membrane application. CGO (gadolinia doped ceria) is one of the most promising materials used in solid electrochemical devices. The solubility of Co in CGO has been reported to be as low as 0.5cat%[.10](#page-3-0) Also, for practical applications it is important to evaluate the transport properties, particularly its surface oxygen exchange, in order to extend the understanding of mechanisms at solid/gas interface. There have been many investigations on the electrical conductivity of CGO, however,

[∗] Corresponding author. Tel.: +44-20-75946760;

fax: +44-20-75946736.

E-mail address: y.ji@ic.ac.uk (Y. Ji).

data on the oxygen diffusivity, especially data on metallic oxide doped CGO, are sparse.^{[11](#page-3-0),12} Therefore, the oxygen diffusion property of the CGO–Co₃O_{4−δ} composites were investigated by an isotopic exchange depth profiling (IEPD)/secondary ion mass spectrometry (SIMS) methods in this study.

2. Experimental

Gadolinia doped ceria ($Ce_{0.8}Gd_{0.2}O_{2−δ}$) (Rhône Poulenc) and cobalt nitrate $(Co(NO₃)₂·6H₂O)$ (Aldrich, purity: 99.999%) powders were used as starting materials. CGO powder and cobalt nitrate with the desired amount of $Co₃O_{4−δ}$ in the final product were mixed in ethanol for 24 h with $ZrO₂$ milling media. The powder mixtures were then oven dried at 70° C and subsequently reground. Following calcination at 650° C for 1 h, the powder blends were milled in ethanol again. After drying, they were sieved through a $53 \mu m$ sieve. The powders were uniaxially pressed into pellets (13 mm diameter) at a pressure 75 MPa, then followed by isostatic pressing at 300 MPa. The green bodies were then sintered in air at different temperatures.

The density of the composite was determined by the Archimedes' method. Phase identification was performed using X-ray diffractometry (XRD) on a Philips PW1710 X-ray diffractometer. A Cu $K\alpha$ target with a monochromator was used with a voltage of 40 kV and a current of 40 mA. A least squares refinement method was used to determine the lattice parameters of the composites. Using a four-probe dc technique, the electrical conductivity of dense ceramic bar samples was measured as a function of temperature in air.

The diffusion of oxygen ions in this study was investigated by introducing 18O tracer isotope of oxygen followed by SIMS depth profiling. Prior to the annealing experiment the samples were all ground flat and polished with successive diamond paste down to $0.25 \mu m$. They were then annealed in research grade oxygen (99.996% pure O_2) at 800 °C for a long enough time to ensure thermodynamic equilibrium. After cooling down to room temperature, the specimens were annealed in an 18O isotope enriched gas for the required time. The exchanged samples were then cut perpendicular to the diffusion surface and the cross-sections were mechanically polished to $0.25 \mu m$ finish. The isotope concentration was measured by secondary ion mass spectrometer (ATOMIKA 6500) using an 8 keV 132Xe^+ beam. In all cases, the primary ion beam was at normal incidence to the sample. To prevent electrical charging on pure CGO sample during analysis, it was co-bombarded with a 2 keV electron beam.

A non-linear least squares regression based upon the solution of the diffusion equation for isotope tracer diffusion in a semi-infinite medium^{[13](#page-3-0)} was used to fit the oxygen diffusion coefficient, D_T , and surface exchange coefficient, k .

3. Results and discussion

3.1. Densification behaviour

The dense $(1-x)CGO-(x)Co₃O_{4−δ}$ composites with *x* in the range of 0–20 mol% were fabricated. The compositions of samples studied, together with densities, are listed in Table 1. The pure CGO sample achieved 98.8% theoretical density by sintering at $1400\,^{\circ}$ C. Composites with density above 95% could be achieved at lower sintering temperatures by adding certain amount of cobalt to CGO.

XRD study shows that the CGO is a single-phase material of cubic fluorite-type structure and that all the CGO–Co₃O_{4−δ} composites with Co₃O_{4−δ} content from 1 to 20% are dual-phase materials. Fig. 1 shows the lattice parameter of CGO and CGO–1, 2 and 5 mol% $Co₃O_{4−δ}$ composites. It is seen that the solubility of $Co₃O_{4−δ}$ in CGO is lower than 1%. This low solubility would promote $Co₃O_{4−δ}$ segregation as a separate phase in the samples fabricated.

3.2. Electrical conductivity

The conductivities of CGO and the (1−*x*)CGO–(*x*)Co3 $O_{4-\delta}$ composites (x = 0.05, 0.1, 0.2 and 1, respectively) were measured by a four-probe dc technique. An Arrhenius plot of the total conductivity as a function of reciprocal temperature is shown in [Fig. 2.](#page-2-0) Measurements were conducted below the phase transformation temperature from $Co₃O_{4−δ}$ to $CoO_{1.07}$ (900–950 °C¹⁴). The conductivity of CGO–5% $Co₃O_{4−δ}$ specimen is similar to that of pure CGO. The

Fig. 1. Lattice parameter of the CGO–Co₃O_{4−δ} composites as a function of the $Co₃O_{4−δ}$ content.

Fig. 2. Arrhenius plot of electrical conductivity in air of the CGO–Co₃O_{4−δ} composites.

conductivity of the CGO–Co3O4−^δ composites increases with increasing $Co₃O_{4−δ}$ when the $Co₃O_{4−δ}$ content is higher than 5% in the final product.

The conductivity of CGO and CGO–5% $Co₃O_{4-δ}$ follows an Arrhenius behaviour, i.e., the data obey the equation

$$
\sigma T = A \exp\left(-\frac{E_a}{kT}\right) \tag{1}
$$

Therefore, the activation energy E_a was calculated using the slopes of the lines and was 75 and 73 kJ/mol, respectively, for CGO and CGO–5% $Co₃O_{4−δ}$ ceramic. Adding up to 5% $Co₃O_{4−δ}$ to CGO does not seem to change the electrical properties of the matrix. However, curvature is apparent for pure $Co₃O_{4−δ}$ and $CGO-C₀₃O_{4−δ}$ composites with $Co₃O_{4−δ}$ content more than 10%. The conductivity of composites increases greatly when adding 10% $Co₃O_{4−δ}$ to CGO. The highest conductivity was achieved by CGO–20% $Co₃O_{4−δ}$ ceramic among the composites studied.

When 5% $Co₃O_{4−δ}$ phase is present in the ion-conducting CGO matrix, the $Co₃O_{4−δ}$ phase exists as discrete particles without three-dimensional percolation, which would block ionic transport and thus behave as an insulator for the conduction of oxygen ions. Therefore, a decrease in the conductivity is expected. A greatly increased conductivity was observed at 10% $Co₃O_{4−δ}$ addition to the CGO and the conductivity increased further with increasing $Co₃O_{4−δ}$ content. This suggests the interconnection of the $Co₃O_{4−δ}$ phase and that the conductivity is mostly determined by the electronic conducting phase of $Co₃O_{4−δ}$.

Oxygen diffusion and surface exchange on pure CGO, CGO–10 and 20 mol% $Co₃O_{4−δ}$ composites with two interconnected phases were investigated by the IEPD/SIMS method. Fig. 3 shows typical ¹⁸O depth profiles measured for CGO and CGO–Co₃O_{4− δ} composites exchanged at 800 °C for approximately 5400 s at 100 mbar. The diffusion profiles are in general accurately described by the non-linear regression. The irregularities seen in the CGO–20% Co₃O_{4−δ}

Fig. 3. ¹⁸O diffusion profiles for the CGO–Co₃O_{4− δ} composites exchanged at 800 ◦C.

composite could be indicative of porosity or inhomogeneity in the sample. It is in agreement with the slightly lower density of this sample. For CGO the ¹⁸O surface concentration is lower than the two CGO–Co₃O_{4−δ} composites. This suggests a low oxygen surface exchange rate at the CGO surface and improved values for the composites. The tracer diffusion coefficient (D_T) and surface exchange coefficient (*k*) of composites are plotted in Fig. 4. The tracer diffusion coefficients of CGO–Co₃O_{4− δ} composites were comparable to the CGO within experimental error. Adding $Co₃O_{4−δ}$ to the CGO, however, increased the surface exchange coefficient significantly. Data on the pure CGO are in agreement with the literature, 12 however, there are no such data available on CGO matrix composites. This is the first set of such data on CGO–Co₃O_{4−δ} composites.

It is known that the diffusion of oxygen ions through fluorite structure is via a vacancy mechanism. Therefore, the

Fig. 4. Trace diffusion and surface exchange coefficient of the CGO–Co₃O_{4−δ} as a function of the Co₃O_{4−δ} content.

concentration of vacancies plays an important role in the diffusivity of oxygen. CGO is a good oxygen ionic conductor in normal temperature and oxygen partial pressure range. $Co₃O_{4−δ}$ is an electronic conductor. The connectivity of the two phases is crucial to produce a mixed-conducting composite. It is shown that the interconnection started to form when 10 mol% $Co₃O_{4−δ}$ is added to CGO. Below that point $Co₃O_{4−δ}$ particles would block the conduction of oxygen ions. Thus, the oxygen transport properties were only investigated on the composites with an interpenetration network. It is seen from [Fig. 4](#page-2-0) adding $Co₃O_{4−δ}$ to the CGO produced similar diffusivities as that of the pure CGO. It suggests that the oxygen diffusivity of the composite materials may be determined by the volume fraction and connectivity of the CGO phase.

The surface exchange reaction is generally described as

$$
\frac{1}{2}\mathbf{O}_2 + V_0^{\bullet \bullet} + 2\mathbf{e}' \to \mathbf{O}_0^X \tag{2}
$$

The oxygen exchange process from the gas phase into the oxide bulk may be divided into a number of possible reaction steps, including adsorption, dissociation and reduction, of oxygen molecules and incorporation of oxygen ions into the oxide bulk. Each of these reactions determines the overall rate of oxygen surface exchange, *k*, and may be rate-limiting. Manning et al. 15 investigated the oxygen surface exchange behaviour of CGO and suggested the surface exchange reaction could be simplified into two steps, a molecular dissociation step and the incorporation of the oxygen into the bulk. It was found that at high temperatures ($>700\degree$ C) the dissociation of oxygen is slow in relation to the bulk incorporation and is rate-limiting. Lane and Kilner¹² also suggested that the oxygen exchange reaction on CGO surface is limited by the availability of free electronic species for charge transfer. Therefore, the concentration of electrons limits the kinetics of the exchange process. In this case, the surface exchange rate of the pure CGO was effectively improved by adding Co3O_{4−δ} phase without a significant effect on the oxygen diffusion coefficient. The CGO–Co₃O_{4−δ} phase boundaries on the surface of the composite may be highly active for the exchange of oxygen by providing electrons in the vicinity of the surface oxygen vacancies. It suggests that availability of electrons may be the rate-limiting step for surface oxygen exchange at high temperature in the fluorite structured CGO phase.

4. Conclusions

 $Ce_{0.8}Gd_{0.2}O_{1.9} - Co₃O_{4−δ}$ composites with different $Co₃O_{4−δ}$ contents have been fabricated. Adding certain amount of $Co₃O_{4−δ}$ to CGO significantly decreased the sintering temperature resulting in composites with densities of 95%. XRD results confirmed that the solubility of Co₃O_{4−δ} in CGO is lower than 1 mol% which promotes the Co₃O_{4− δ} as a separate phase. The conductivity of the CGO–Co₃O_{4− δ}

composites increases with increasing $Co₃O_{4−δ}$ content when more than 5 mol% $Co_3O_{4-\delta}$ is present. A three-dimensional interconnection is formed when the $Co₃O_{4−δ}$ is greater than 10 mol% which was confirmed by conductivity measurement. The oxygen diffusion behaviour of the composites was measured by isotope exchange/SIMS. Adding $Co₃O_{4−δ}$ to CGO increased the surface exchange coefficient effectively which indicates that the availability of electrons is rate-limiting reaction for surface exchange in the CGO materials.

Acknowledgements

The authors would like to thank Air Product and Chemicals, Inc., for the funding for this work.

References

- 1. Steel, B. C. H., Hori, K. M. and Uchino, S., Kinetic parameters influencing the performance of IT-SOFC composite electrode. *Solid State Ionics* 2000, **135**, 445–450.
- 2. Huijsmans, J. P. P., van Berkel, F. P. F. and Christie, G. M., Intermediate temperature SOFC—a promise for the 21st century. *J. Power Sour.* 1998, **71**, 107–110.
- 3. Dyer, P. N., Richards, R. E., Russck, S. L. and Taylor, D. M., Ion transport membrane technology for oxygen separation and syngas production. *Solid State Ionics* 2000, **134**, 21–33.
- 4. Huang, K., Schroeder, M. and Goodenough, J. B., Oxygen permeation through composite oxide-ion and electronic conductors. *Electrochem. Solid State Lett.* 1999, **2**, 375–378.
- 5. Adler, S. B., Lane, J. A. and Steele, B. C. H., Electrode kinetics of porous mixed-conducting oxygen electrodes. *J. Electrochem. Soc.* 1996, **143**, 3554–3564.
- 6. Kim, J. H. and Choi, G. M., Mixed ionic and electronic conductivity of [(ZrO2)0.92(Y2O3)0.08]1−y·(MnO1.5)y. *Solid State Ionics* 2000, **130**, 157–168.
- 7. Park, Y. M. and Choi, G. M., Mixed ionic and electronic conduction in YSZ–NiO composite. *J. Electrochem. Soc.* 1999, **146**, 838– 889.
- 8. Gauckler, L. J. and Sasaki, K., Ionic and electronic conductivities of homogeneous and heterogeneous materials in the system $ZrO₂–In₂O₃$. *Solid State Ionics* 1995, **75**, 203–210.
- 9. Duran, P., Capel, F., Moure, C., Gonzalez-Elipe, A. R., Caballero, A. and Banares, M. A., Mixed (oxygen ion and n-type) conductivity and structural characterization of titania-doped stabilized tetragonal zirconia. *J. Electrochem. Soc.* 1999, **146**, 2425–2434.
- 10. Lewis, G. S., Aktinson, A., Steele, B. C. H. and Drennan, J., *Solid State Ionics* 2002, **152**, 567–573.
- 11. Ruiz-Trejo, E., Sirman, J. D., Baikov, U. M. and Kilner, J. A., Oxygen ion diffusivity, surface exchange and ionic conductivity in single crystal gadolinia doped ceria. *Solid State Ionics* 1998, **113–115**, 565–569.
- 12. Lane, J. A. and Kilner, J. A., Oxygen surface exchange on gadolinia doped ceria. *Solid State Ionics* 2000, **136/137**, 927–932.
- 13. Crank, J., *The Mathematics of Diffusion*. Oxford University Press, 1975, p. 28.
- 14. *Handbook of Chemistry (The Chemical Society of Japan)*. Maruzen, Tokyo, Japan, 1984, p. 128.
- 15. Manning, P. S., Sirman, J. D. and Kilner, J. A., Oxygen self-diffusion and surface exchange studies of oxide electrolytes having the fluorite structure. *Solid State Ionics* 1997, **93**, 125–132.